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ABSTRACT: We calculate deep inelastic structure functions for mesons in the D3-D7 brane
model, that incorporates flavour to the AdS/CFT correspondence. We consider two differ-
ent prescriptions for the hadronic current dual: a gauge field in the AdS bulk and a gauge
field on the D7 brane. We also calculate elastic form factors in both cases. We compare
our results with other holographic models.
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1. Introduction

The AdS/CFT correspondence [Il-f] relates string theory to superconformal gauge theories
at large 't Hooft coupling. In particular string theory in AdSs x S® corresponds to a
gauge theory on the four dimensional boundary. This exact correspondence inspired many
interesting phenomenological models known as AdS/QCD that approximately describe
important aspects of hadronic physics.

One of the simplest models, now called hard wall model, consists in breaking conformal
invariance by introducing a hard cut off in the AdS space. The position of the cut off
represents an infrared mass scale for the gauge theory. This model was very successful in
reproducing the scaling of hadronic scattering amplitudes at fixed angles from strings in
AdS space [H]. This result was also obtained from this model using a map between bulk
and boundary states in [ff]. String theory predictions in flat space [[jj were in contrast to
the experimentally observed behavior, obtained from QCD a long time ago [[{, §]. The AdS
warp factor is crucial to find the correct hard scattering behavior. The hard wall model
was also useful to estimate hadronic masses [0 [[4].

Another interesting model inspired in AdS/CFT is the soft wall, that consists of a

background including AdS space and a dilaton field. This field acts effectively as a smooth



infrared cut off and leads to linear Regge trajectories for mesons [[§]. This model was also
used to calculate masses for glueballs [[Ld] and light scalar mesons [[L7].

In the AdS/CFT correspondence for the case of AdSs x S5 space, the fields show
up as excitations of open strings attached to N, D3 branes. So, they are in the adjoint
representation of the SU(V,.) group. In order to introduce fields that are in the fundamental
representation, like quarks, one can add Ny D7 brane probes in the space [[§-R(]. In this
D3-D7 branes model, open strings with an endpoint on a D3 and the other on a D7 brane
represent quarks with color and flavour. On the other side, mesons are described by strings
with both endpoints on D7 branes. So, they correspond to D7 brane fluctuations in the
AdS background. Masses for mesons in this model were calculated in [[J]. For an excellent
review see: [21].

The internal structure of hadrons can be probed by various interaction processes. A
very important one is deep inelastic scattering (DIS). This process was investigated using
gauge/string duality by Polchinski and Strassler 27 in the context of the hard wall model.
Recently a similar investigation using the soft wall model was made in [2J]. The hadronic
structure functions found from the hard and soft wall models are different, although they
coincide at leading order. It is interesting to remark that hadronic elastic form factors
obtained from these models 2J-Rg] are not the same. Other aspects of DIS structure
functions and related hadronic processes from AdS/QCD have been recently discussed in
for example [R9-B4].

The hard and soft wall model do not take into account the flavour degrees of free-
dom. Here we will consider deep inelastic scattering using the D3-D7 brane model, where
the flavour of the quarks is included. Elastic form factors in this model were calculated
in [20, B3).

This work is organized as follows: in section 2 we review deep inelastic scattering in the
hard and soft wall models. In section 3 we briefly describe the D3-D7 model and calculate
the structure functions for scalar mesons considering two cases: the gauge field living in
the entire AdS bulk and the gauge field constrained to the D7 brane. We present in section
4 several plots comparing the structure functions of the four models considered in this
article. In section 5 we calculate the elastic form factors for both cases and in section 6 we
present our conclusions.

2. Deep Inelastic Scattering in the hard and soft wall models

In deep inelastic scattering (DIS) a lepton scatters from a hadron of momentum P* through
the exchange of a virtual photon of momentum ¢*. The final hadronic state X with
momentum P)’é is not observed. Then cross section involves a sum over all possible X. The
DIS parameters are ¢ and the Bjorken parameter z = —¢?/2P - q.

The DIS cross section is calculated from the hadronic tensor

we =i [atyernip, ol (). 0] 17.Q). (21)

where JH(y) is the electromagnetic hadron current and Q is the electric charge of the
initial hadron. The structure functions F(z,¢?) and Fy(x,q?) are defined by the tensor



decomposition for the spinless case [24]

q"q” 2z 2 g" q”
WH = Fy(z,¢*) (" — —=— | + 5 F Py (P + - 2.2
l(x7q )(TI q2 > + q2 Q(waq ) +2JZ‘ +2.Z' ) ( )
where we use the convention 7, = diag(—,+,+,+).
On the other hand, the DIS cross section is related, by the optical theorem, to the

forward hadron-photon Compton scattering amplitude, determined by the tensor
1 —i [ dtyerr(p, o (14(0)0 ) 1P Q). (2.3)

This tensor can be decomposed in the same way as equation (R.J) but with structure
functions Fy(x,q?) and Fy(z,q?) which are related to the DIS structure functions by

Fyo(x, q2) = 27TIH1F172(3:, q2) . (2.4)

The imaginary part of the forward Compton scattering amplitude can be expressed in
terms of a sum over the intermediate states X with mass My

T = 212> §( M + (P +0)? ) (P. QI (0)|P + 4, X)(P + ¢, X|J*(0)| P.Q) . (2.5)
X

2.1 DIS in the hard wall model

The hard wall model consists of an AdSs x W, space with metric gysy:
R2
ds® = gunda® de® = 5 (d2* + nudydy”) + R sy (2.6)

with 0 < z < 1/A , where A is an infrared cut off interpreted as the QCD scale and R
is the AdS radius defined by R* = 47 N,g,o/ 2. W is a five dimensional compact space
which in the simplest case can be identified with S°. The prescription relating the matrix
elements of a scalar hadronic U(1) current to a ten dimensional supergravity interaction
action found in [J] is the following:

(2m)18"(Px — P — q)u(P + ¢, X|J*(0)|P, Q) = iQ / @02/ =g AP (@,0n 0% — Picon; )

(2.7)
where 7, is the virtual photon polarization, Am(z) = (A., A,) is a Kaluza-Klein gauge
field, ®; and ®x are the dilaton fields representing the initial and final scalar states. This
prescription is valid only in the regime x > 1/y/gN,.. For smaller values of = one should
include massive string states, as discussed in [J].

In the hard wall model the relevant gauge field solutions are the non normalizable
modes represented in terms of the Bessel function Kj(gz). For the scalar states with
momentum p the relevant solutions are normalizable and expressed in terms of Ja_2(pz).
The mass spectrum of the final hadronic states in the hard wall implies that

3 5<M§< Y (Pt q)2> - m . (2.8)
X



Using these results, the scalar structure functions in the hard wall model at leading
order in A?/q? take the form [PJ:

A2 A—-1
Fi(z,¢?) =0; Fy(z,q¢?) = 1CyQ* <?> A1 — 2)A 72, (2.9)

where Cj is a dimensionless normalization constant and A is the scaling dimension of the
scalar state.

2.2 DIS in the soft wall model

In the soft wall model [[[§] there is an AdS5 space with a static dilaton background field ¢
chosen as ¢ = cz?. This dilaton acts as an infrared cut off. The constant ¢, with dimension
of mass squared, is related to the QCD scale.

In [PJ] we considered a ten dimensional extension of this model. In this case, the
prescription for the supergravity regime is

(2m)" 6" (Px = P=q)nu(P+q, X|J*(0)|P, Q) = iQ / 402y =ge 2 A (Di0n @k ~ P, )

(2.10)

The soft wall solutions for the gauge and scalar field involve confluent hypergeometric

functions U(1+ Z—i; 2; cz?) and M(% + %; A —1; cz?), respectively, with p = P or Py. The
mass spectrum of the final hadronic states implies that in the soft wall model

Zé(M)% +(P —|—q)2) = 4%. (2.11)
X

Using these results, we found

2 213 (5 L A _ ) T(L 4 5 _ Ayq2
F =0; F2:87r3%(A—1)P(A)[q—] (4;+§ ){ (4g+4c i)} , (212)
z 4] T -2 +DINE + 5+ %)

which agrees at leading order in 4¢/¢? with the hard wall structure functions (.9) as shown

in [RJ.
3. DIS in D3-D7 system

The D3-D7 system consists of the AdSs x S° space with the addition of N ¢ coincident
D7 brane probes. The localization of the D7 branes can be represented by writing the
AdS5 x S® metric in spherical coordinates:

02y = gunde™de™ = ndatde® + o [ar? +12(ady” + sin? 6,67
10 = gundrTde” = iy datde” + — r* +r°[df,” + sin® 6,db;
+sin? 0 sin? O (d6? + sin® 01d63 + sin? 0; sin® 92d<,02)]} . (3.1)

The radial coordinate 0 < r < oo is related to the coordinate z used in eq. (R.6) by:
r = R?/z. Now defining the cilyndrical coordinates

p = rsinfq sin Oy, ws = rsin B cos b, wg = 1 cos b1, (3.2)



the metric is rewritten as

I R?

ds3y = datda’ + ———5——
0= R p? + wE + w}

dw? + dw? + dp? + p2dQ§] . (3.3)
where dQ3 = d6? + sin® 61do3 + sin? 0, sin® Ay dy?.

In these new coordinates, the localization of the D7 branes can be chosen as ws = 0,
we = L. The metric induced on the brane is then

o>+ L2 R2

ds? = Gpda®dx’® = 2 N dat dz” + dp® + p*d03,) . (3.4)

L2(
Note that p? + L? = r? so that the AdS radial coordinate r on the brane is restricted to
L <17 < oco. This corresponds to an induced infrared cut off: m; = L/R2.

Scalar mesons in this model show up as fluctuations of the D7 branes in the transversal
directions ws, wg. For simplicity we are going to consider just one flavour: Ny = 1. The
effective action for these fields is [[9]

ab
Sy = —2p7(Rmra) /de\/ zcj_ 2 0ud" Op9 (3.5)

where p7 is the D7-brane tension. It is convenient to rescale from now on the scalar field
as ® = \/2u7Rmwa’¢. Then the equation of motion is
v G ab
8[2+L2G 8@}—0 (3.6)

The solution is written in terms of a hypergeometric function F'(a,b; c;w)

)4 2
N 70, S ,
O, = CpreVY(Q) i+ Z—i]””“F n—~0—1,-n;0+2;— I3 (3.7)
where C,, ; is a normalization constant, {2 represents the coordinates on S3.0(0 +2) is the
eigenvalue of the angular laplacian, related to the conformal dimension A of the hadron
by: A =/{+ 3 [[J. The parameter n is defined by —p? = 4m?[(n + £+ 1)(n + £ + 2)].
Choosing the normalization condition

3 \4 -G 2

we find that n is a non negative integer and that

2(2n + 20 + 3)T(n + 20 + 3)
Cne = \/_ T(n+ 1)I2(0 + 2) '

(3.9)

The scalar field representing the initial state corresponds to n = 0 and p = P with
mass given by P? = —4m?[(¢ + 1)(¢ + 2)]. For the final state we have p = Px and n
satisfying the relation:

dmin+L+1)(n+€+2)])=s=—-Pf =—-P>+4° (% - 1> . (3.10)



Explicitly, the initial and final hadronic solutions are respectively

14
o, = CO’Zeip.yyé(Q) (p/L)

1+ 2_22]5—1—1
¢ 2
—_ -y (p/L) o P
ox =C, ey (Q)—[1 n p_z]n+z+1F n—0—1,-n;l+2;— I3 (3.11)
L2

Finally, using eq. (B.10) we can calculate the sum over the masses of the final states
appearing in eq. (R.§) for the D3-D7 model:

1 1

2 2) ~ =
;5<Mx+(P+Q) ) TAmZ(2n +20+3) 4mhm'

(3.12)

Next we consider a gauge field ("photon”) that will be taken as the approximate dual
of the boundary hadronic current. We will consider two possibilities to mimic this current:
a gauge field living in the AdS bulk and a gauge field living on the D7 brane.

3.1 Gauge field in the AdS bulk

The interaction of the meson with the virtual photon can be represented holographically by
the interaction of a Kaluza Klein gauge field with the D7 brane scalar field. A perturbation
of the AdSs x S° metric of the form §g,a = Amva, where m = (r,u) and o = (61,602, ¢)
induces a perturbation of the D7 brane metric of the form §G . = Amva, where m = (p, u)
and A, = p/rA,. This metric perturbation in action (B.5) leads to the following interaction
term

ocAm

Sint = /d8x\/—

Using the relation between the charge Q and the Killing vector v*: Rv*0,® = iQ®P the
matrix element of the interaction action (f|Sint|i) takes the form (omitting the states in

(a@a o+ O <I>ac1>) (3.13)

the notation) .
(Sint) = % / d*xv/—GA" s (3.14)

where

1
p2 + L2
is a five dimensional conserved current. The prescription for calculating the matrix element

(cp,-amcp} - (amcpi)cp;() . (3.15)

Jin =

of the hadronic current is
(2m)'0"(Px — P — q)nu (P + ¢, X|J*(0)|P, Q)
_ /d8 V= Am (q> D ® — B 05D ) . (3.16)
The solution for the gauge field in the bulk, Satlsfymg the boundary condition A,(p —
00,Yy) = nueiq'y can be written as 29
R? R?
A, =y, el yq—Kl <q—>

A, = —?n”"qu(‘)pA,,, (3.17)



where ¢ = \/¢? and r = \/p? + L2. The conservation of the current: 07 [\/—GGmﬁjﬁ] =0
implies that the interaction action can be rewritten as

o o |
(Sint) = % / BrV=GG™ A, (b _ q—gqunkvam) (3.18)

The effective four dimensional current j, — %q,,n)”(%\ J~ is conserved. This assures the
transversality of the scattering tensor.
The matrix element of the hadronic current then takes the form

m
(P44, X107 Q) = 20RC, €, |y + £ | T (3.19)

where

1
Thuk = / dvv®(1 — v2)£+1K1(ﬁ)F(—n =1, n4L04+2;0+2;1 0% (3.20)
0 mp

and v = \/ﬁ Using these results and equations (R.4), (R.5) and (B.13), we find
p

F1:0;F2:87T

5 (3.21)

32 D20+ 4) D(n +20+3) < ¢ >215u1k‘
my

T4 +2) T(n+1) \m2) =z

We did not find a general analytical solution to the integral Ty, of eq. (B.20). Never-
theless, near the elastic limit £ — 1 we performed an analytical approximation, described
in the appendix, and found, for ¢? > m,%

4 o\ {42 4 2\ A-1
F2 ~ < T;Lzh > (1 — IIJ‘)Z+1 = <—T;L2h > (1 — :E)A_2, (322)

which agrees with the hard and soft wall model results in this regime.

We also performed numerical calculation of the exact integral of eq. (B.2(]) in order to
investigate the dependence of the structure function F» on ¢? and z. For the case ¢ = 0
in the range 0.25 < z < 1 with ¢* > m}% we found that the structure function F5 has the
approximate behaviour:

¢ A—

amp?\ et eea_ (Am2\ 7T A-2 A+

Fy ~ 5 (l—2)" ™ =(—— (1—2)> 2277 (3.23)
q q

For ¢ = 1 this behaviour is observed in the range 0.25 < x < 0.9. These results are the

same found for the hard and soft wall models at leading order.

In section 4 we plot the structure function (B.21)) comparing it with the other models.

3.2 Gauge field on the D7 brane

In reference [[[9], solutions for gauge fields living on the D7 brane were studied. These
solutions were obtained from the Dirac-Born-Infeld action for the D7 brane. They obtained
various types of gauge field solutions. Here we are interested in solutions for transverse
photons of the form

Au:nueiquf(ﬂ);Q‘7720§APZO§A0¢:07 (3.24)



where f(p) satisfies the equation

2

q 1
e () o =

with ¢ = p/L. This corresponds to the type II gauge field of ref [[J], with no angular
dependence. The non normalizable solution of the above equation is

fw) =CoF(—a,1+ o;2;w) (3.26)
where
a__1+2 q_2_1- w—i’ C, =T2+a)T(1-a) (3.27)
= 2 2 m}% ) - p2+L2 ) q — . .

The constant C;, is determined from the boundary condition: A,(w — 1) = n,e'?¥. This
gauge field solution is dual to the boundary flavour current. It is important to remark that
despite the fact that « is a complex variable, this solution is real since it depends only on
the combination a(a + 1) = —%.

The interaction between this gauge field and the scalar field that lives also on the D7
brane can be obtained by imposing gauge invariance of the scalar action of eq. (B.H) by
introducing covariant derivatives (and again the rescaling ® = \/2u7Rma/¢ )

ab
Sg / dzv/ -G G V., *V,®, (3.28)

where V, =9, — z%Aa. From this action we obtain the three point interaction term
. Q v * *
(Sim) =i / e e Ly 2 L2 (<I>Z-8,,¢>X - <I>X8,,<I>Z-), (3.29)

where we have used the fact that the radial and angular components of the gauge field
vanish (see eq. (B.24)). Following a prescription similar to eq. (B.16) we find

<P +q, X|J“(0)|P7 Q> = QRCO,EOn,ZCquraneP'ua (330)

where C,,; and Cy are defined in egs. (B.9) and (B.27) and
1
Tirane = / dww™ F(—a, 1+ a;2;w)F(—n — £ — 1,n + £+ 2,0 + 2;w). (3.31)
0

From eq. (B.30) we see that F; = 0. The structure function F is calculated in the
appendix with the result

3
B = 5Q2r(2£+4) (n—l—2€+3)l< 7 ) 1
r2(+2) T'(n+1) 4m3 cosh?( 4q ;-1

h
o)

P+2+5)0(G +1) T2 k—1?
x{]z:;(j+1)1“(n+2€+4+j)1“(j+1_n)kl;[l[4m%k2+ 2 ]}.(3.32)




This expression can be approximated in the regime x < 1. In this case, as described
in the appendix, the above equation reduces to

(1.27)2

Am2 042
By o 70 Q25T (20 + 4) (€ 4+ 2) <ﬂ> 2t (3.33)

P2

Note that in this model A = £+ 3 so that this structure function reproduces the same
dependence on ¢? and on x as in the hard wall model of eq. (£.9), in this regime of x < 1.

We also performed a numerical analysis of the structure function Fy of eq. (B.39) for
different regimes. We found that the dependence on ¢* at leading order, for 0.1 < = < 1,
is approximately equal to the hard and soft wall models. In section 4 we present plots of
this brane structure function, comparing with the other models, for different regimes of x
and ¢°.

4. Comparison of the models

Here we compare our results for the structure function F5 for D3-D7 brane model with
the gauge field in the bulk, eq. (B:21), and on the brane, eq. (B:33), with those of the hard
and soft wall models, eqs. (R.9) and (R.13), respectively. Since these models have different
parameters representing the infrared cutoff, it is convenient to introduce a dimensionless
variable @ identified as ¢/2mj, in D3-D7 model, ¢/A in the hard wall and ¢/2y/c in the
soft wall model.

For Q = 75 we show in figure 1 the dependence of the structure function F5 with the
Bjorken parameter z, in the range 0.25 < x < 1, for £ = 0,1,2 and 3. Each plot contains
the curves for the four models. Note that the D3-D7 bulk structure function coincides
with those of the hard and soft wall models, represented by the blue lines. The D3-D7
model with gauge field on the brane is represented in red lines. Note that the maximum
of these functions occur in different values of «x, indicating a different dependence on this
variable. All the structure functions are normalized setting their maximum values to one
in each plot. For other values of ), we found structure functions behaviour similar to that
exhibited in figure 1, as long as Q > 1.

In figure 2 we illustrate the small x behavior of the structure functions. The bulk
structure function has a singular behavior which is shown in the first plot. In the second
plot, we compare Fy for the brane (red line) with hard and soft wall (black line). The
normalization constants are the same used in figure 1. These plots were obtained using
@ = 75 but we found the same behaviour for other values of @ > 1.

We also studied the dependence of F» on Q2. In figure 3 we plot — In(F»(Q)/F2(Qo))
as a function of In(Q?/Q3%), for various values of x and ¢. In the first plot = = 0.5, Qg = 45,
and £ = 0,1,2. In this case the structure functions for the four models coincide. Each line
in this plot represents a different value of £. This plot shows that the structure functions
behaves as Q~2+2) for this value of z. The second plot corresponds to z = 0.9, Qp = 12
and £ = 0. In this case the brane is represented by the red line while the others are
represented by the blue line. This indicates that the brane structure function decreases
slightly faster than the others, that behave as Q~. For small values of x the behavior of
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Figure 1: The structure functions F5 versus the Bjorken variable z for £ = 0,1,2,3 and @ = 75.
The red lines represent the brane results. The blue lines represent the other models.
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Figure 2: The structure functions F5 at small x for £ = 0 and @ = 75. The first plot corresponds

to the bulk case (blue). In the second plot the red line represents the brane structure function,
while the black line corresponds to the hard and soft wall models.

the bulk structure function is not well described by a power of Q? if @ > 1. This is evident
from the highest values of @) in the third plot of figure 3, where x = 0.25 and Qg = 39.

5. Elastic form factors

Hadronic elastic form factors can also be calculated from the results of the previous section
for the gauge field in the bulk and on the brane. These form factors are defined in terms

— 10 —



-Ln(F,(Q)/F5(0,) x=0.5 I= 0,12  -Ln(Fy(Q)/F5Q,) x=0.9 =0
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-Lu(F,(Q)/F5Q,)) x=0.25 =0
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0 T T T T

1
Ln(Q’/0)

Figure 3: The Q? dependence of the structure functions F, for the four models considered. In
the first plot, with = = 0.5, Q¢ = 45, we have ¢ = 0 ((blue line), £ = 1 (red line) and ¢ = 2 (black
line). Each line in this plot represents the coinciding results for the four models. In the second plot
x = 0.9 £ = 0 and the red line represents the brane case while the blue line represents the other
three models. In the third plot, with z = 0.25 and ¢ = 0, all the structure functions coincide except
for the bulk case that oscillates for higher values of ).

of the matrix element of the hadronic current with the condition n = 0 which corresponds
to the elastic regime x = 1. Explicitely, the form factor F(¢?) is defined by

(P +q,X|JM0)|P, Q) = 2F(¢*)[2P" + ¢"]. (5.1)

For the case of the gauge field in the bulk, using eqs. (A.4) and (B.19) we find

042
F(¢%) = %F(% +4)(0+2) (4%% '
m2 A—1
= %F@A —2)(A—-1) <4q—2h> : (5.2)

Considering now the gauge field on the brane we can calculate the corresponding elastic
form factor. As show in the appendix, the result is exactly the same obtained for the gauge

— 11 —



field in the bulk. This result has been obtained before in [R(] for the D3-D7 model, using
different scalar field solutions.

It is interesting to note that these results are also in agreement (at leading order in
q?) with those coming from the hard and soft wall models [R25§—P7].

6. Conclusions

We calculated hadronic deep inelastic structure functions and elastic form factors using the
D3-D7 brane model. This model incorporates flavour to AdS/CFT, based on a top-down
approach. We have considered two possibilities for the gauge field dual to the hadronic
current: a Kaluza Klein gauge field that lives in the AdS bulk and a D7 world-volume
gauge field. They correspond to different boundary current operators. In the first case the
boundary current is associated with the supersymmetry group SO(4) while in the second
case with the flavour symmetry group U(Ny).

For intermediate values of z, the structure functions of the four models considered
(gauge field in the bulk, gauge field on the brane, hard and soft wall) present for £ =0, 1,2
approximately the same dependence on ¢%: (¢%)'~*. For small values of z the bulk structure
function has an oscillating behaviour while the other models preserve the same power law
dependence. For large values of x and ¢/ = 0 we found a small deviation of the brane
structure function from (¢%)'=2.

The dependence on the Bjorken variable x was illustrated in figures 1 and 2. We found
that for the gauge field in the bulk the structure function behaves as (1 — z)*~222+! for
intermediate values of x, coinciding with the hard and soft wall models. For the gauge field
on the brane we find a different behaviour. In particular, the localization of the maximum
value of the structure function differs from the other three models. This fact may be related
to the different interpretation of the boundary current operators. For the gauge field in
the bulk the dual current is related to supersymmetry, as it happens in the hard and soft
wall models. This contrasts with the case of the gauge field on the D7-brane where the
dual current corresponds to flavour symmetry.

We considered in this article massless D7 scalar fields. This leads to a relation between
the conformal dimension A of the hadronic operator and the angular quantum number on
S3: A = ¢+ 3. Another different and interesting possibility would be to consider A to
be independent of ¢. If we follow this approach, an eight dimensional mass for the D7
scalar field would be necessary. In this case the supergravity approximation, used in this
work, would be valid only for the regime = > (v/gN.)~!, so that the eight dimensional
mass would be negligible with respect to the string scale 1/ Vo/. This approach would be
analogous to that considered, for ten dimensional scalar fields, when studying DIS in the
hard and soft wall models.
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A. Calculations of the structure functions and form factors

A.1 Gauge field in the bulk

Here we present an approximation for the integral Zpy of eq. (B.2(0) valid for z — 1 and
P> m,% Using the property

1
F(—n—ﬁ—l,—n—l—€+2;€—|—2;1—vz):vz("HH)F(—n—ﬁ—l,—n;E—I—Q;l——2>
v

and expanding the hypergeometric function one finds

Toulk = ; (Zn ?f +_2;3"ﬂ(_")" (-1 15, (A.1)

where (a); is the Pochhammer symbol and

1
Iz' — / dv UZ(n—i—Z—i—Z—i) (1 - v2)€+1+i Kl <i7}> ) (A2)
0 mp

Near the elastic limit we have ¢?/ m% > n?. In this case the integrand decreases rapidly,
because of the Bessel function K7, and the relevant contribution to the integral comes from
the region 0 < v < my/q. Then we can use the approximation (1 — v2)5+1+i ~ 1 in the
integrand and the integral domain can be extended to 0 < v < o0

T, ~ /OO do 2 +e+2-1) K <iv>
0 mp,

1 <2mh > 2n+20+5—21
q

T(n+0+3—i)D(n+0+2—1). (A.3)

4

Substituting this result in the Zy,1 integral and using the property

; T'(a+1)
—a); = (—1) :
()= (D'
one finds
2n+20+5 2
Thulk = <2ﬂ> wf(”*'“ﬂ) 1F2<—n;€+2,—n—£—2;— d 2>,
q 4 4my,
(A.4)

where 1 F5(a; b, ¢; z) is another hypergeometric function. Then, using this result in eq. ()
we find an approximation for the structure function near the elastic limit

['(20+4)T(n+20+3) [ ¢* —2n—20-3
T4(¢+2) T(n+1) \4m?

1
Py = 87°Q? —-
€T

2

2
AT+ 43T+ l+2) 1 F(—nib+2,—n—f—2—L ). (A5
4mh2
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Taking just the dominant term of the hypergeometric function we find that, for z — 1

Py ~ <47Z;‘2>£+2(1 — )it = <4mh )A 1 (1—z)22 (A.6)

q2

A.2 Gauge field on the brane
Using eqgs. (B-30) ,(B-3]) and the relation

7q>
re4+a)l(l —a) = , (A.7)

2
4m3 cosh(m 4(71'1—% -5

the structure functions can be written as

T(20+4)T(n+20+3) [ ¢ \° 1 72
Fi =0; F, =8m°Q? rane (A8
re+2) T'(n+1) 4m3 cosh?( (A-8)

In order to evaluate Zy,ane we use the identity
Fn—f—1n+Ll+20+2w) =1-w)" "N Fn—0-1,-n0+2; Ll) (A.9)
w J—

and expand both hypergeometric functions. Then, we can perform the integral and find

) (14 a); (e+2+j)z”:(—n)i(e+2+j)i

JJ'F(’I”L+2€+4+]) (€ + 2);i!

o0
Tirane = D(n + £+ 2) Z
j=0 i=0

B " > —a)j(1+a);T({l+2+ )G +1)
== >”+2§ PG+ T+ 20+ d+ )G +1—n) 10

This sum can be expressed in terms of real variables by using the relation

(el +a); ol v hod] 1 ie e

T2 2 212
(4" o] k k P dmyk k
So that, the structure function takes the form
Py — s+ (n+2£+3)1<q2 >3 1
I2(0+2) I'(n+1) Amj; cosh?( 4q—22 -
my,

(C+2+ )T +1) N
L (A12
{22: G+ 1T n+2€+4—|—j)1“(j+1—n)k1;[1 i Tk (4.12)

Approximation for x < 1. It is possible to approximate the sum above in the regime
of n? > ¢/ 4m%, which means # < 1. In this case the above equation reduces to

g[#ger%] ~ 42 11 [(212:k— 1)1)} H [Hnﬁ(zg—?—l)?]

k'=1
1.27 ( Tq (A13)

2
(@]
2
=
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which is valid since j > n is very large. Substituting this result in eq. (A.10)), one finds

1.27 I'(n—-1) q
7 ~ (—1)"—T 2 ——  * _cosh | —— A.14
e ()"0 4 2T 3 D o (1) (A
and then the structure function reads
{42
.5 2(1-27)2 o ((4my, 0+4
Pplyq » Q=020+ 4)(L 4+ 2) 2 ) 4 (A.15)

Elastic form factor. We have to work out the sum in eq. (A.I0) for the case n = 0:

o _ DU42) ()1 + a);(+ 2)
brane — .
(20 +4) = 20+ 4);
(e+2) (d ¢
= — 1+ ;20 + 4; 1)t : Al
%_1_4{ Z —a, 1 4 ;20 + 4;t)t ]}t:1 (A.16)
Using the property
¢
jf (a,b;c;t) = ( 2i§j)zF(a+€,b+f;c—l—£; t), (A.17)

we find

n=0)  T2(L+2)T(£+1)

=0 _ 1 (=a)e—r(1 4+ a)eg
brane F(2€+4)

[k;!r(e T1-KDl+2—k) 2+ 4

|
ol
M-
(@)

><F(—oz+€—k:,1+a+€—k;3€+4—k;1)]

B (£+2 g+1 (0+3+k) 2043 q2 / -1
T T(—« Zklré+1— K)T(C+2 — k) LH [4 5 + K (K — )]

—f1—k LR
(A.18)
The relevant term in the sum, for ¢ > m3, is k = 0. Using eq. (B-30) we find
4 042
F() = Orees @+ o) (20
2 2
- %F@A —2)(A - 1)( Z;h> . (A.19)
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